[bootstrap](http://en.wikipedia.org/wiki/Bootstrapping_(statistics))是对观测数据集进行有放回(replacement)的随机抽样,以评估总体的各项统计指标。可以用于假设检验、参数估计。好处是并不要求大样本,也不要求正态数据,并且对于不同的统计指标使用的是同样的计算方法。结果也更为可靠,坏处是计算量大。
统计推断(statistical inference)是基于样本统计值的抽样分布来计算的,抽样分布需要从总体中许多的样本来计算,在只有一个样本的情况下,bootstrap对这一随机样本进行有放回的重复抽样,每一个重抽样本与原始随机样本一样大,每次计算相应的抽样的统计值,重复了N次之后,就可以计算统计值的bootstrap分布。
下面做一个小小的试验:
a <- c(seq(1:10), rnorm(50))
#创建一个样本,60个数据,非正态分布的,如下图