Recent Publications

More Publications

  • ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization

    Details PDF Code Project

Today is my birthday and it happened to be the release day of Bioconductor 3.3. It’s again the time to reflect what I’ve done in the past year.

Read more

bitr_kegg

clusterProfiler can convert biological IDs using OrgDb object via the bitr function. Now I implemented another function, bitr_kegg for converting IDs through KEGG API.

library(clusterProfiler)
data(gcSample)
hg <- gcSample[[1]]
head(hg)

## [1] "4597"  "7111"  "5266"  "2175"  "755"   "23046"

eg2np <- bitr_kegg(hg, fromType='kegg', toType='ncbi-proteinid', organism='hsa')

## Warning in bitr_kegg(hg, fromType = "kegg", toType = "ncbi-proteinid",
## organism = "hsa"): 3.7% of input gene IDs are fail to map...

head(eg2np)

##     kegg ncbi-proteinid
## 1   8326      NP_003499
## 2  58487   NP_001034707
## 3 139081      NP_619647
## 4  59272      NP_068576
## 5    993      NP_001780
## 6   2676      NP_001487

np2up <- bitr_kegg(eg2np[,2], fromType='ncbi-proteinid', toType='uniprot', organism='hsa')

head(np2up)

##   ncbi-proteinid uniprot
## 1      NP_005457  O75586
## 2      NP_005792  P41567
## 3      NP_005792  Q6IAV3
## 4      NP_037536  Q13421
## 5      NP_006054  O60662
## 6   NP_001092002  O95398

The ID type (both fromType & toType) should be one of ‘kegg’, ‘ncbi-geneid’, ‘ncbi-proteinid’ or ‘uniprot’. The ‘kegg’ is the primary ID used in KEGG database. The data source of KEGG was from NCBI. A rule of thumb for the ‘kegg’ ID is entrezgene ID for eukaryote species and Locus ID for prokaryotes.

Read more

KEGG MODULE is a collection of manually defined functional units, called KEGG modules and identified by the M numbers, used for annotation and biological interpretation of sequenced genomes. There are four types of KEGG modules:

  • pathway modules – representing tight functional units in KEGG metabolic pathway maps, such as M00002 (Glycolysis, core module involving three-carbon compounds)
  • structural complexes – often forming molecular machineries, such as M00072 (Oligosaccharyltransferase)
  • functional sets – for other types of essential sets, such as M00360 (Aminoacyl-tRNA synthases, prokaryotes)
  • signature modules – as markers of phenotypes, such as M00363 (EHEC pathogenicity signature, Shiga toxin)

Read more

To my knowledge, BioEdit is the most comprehensive biological sequence alignment editor. Most of my labmates run this software using Parallels Desktop. For some of them, BioEdit is the only reason to install Parallels Desktop.

I need to edit my alignment recently, and install it in my iMac using Wine, which is a compatibility layer for running Windows applications on POSIX-compliant OS. Although it is famous in Linux community for many years, many OSX users never heard of it.

Read more

I extended the subview function to support embed image file in a ggplot object.

set.seed(123)
d = data.frame(x=rnorm(10), y=rnorm(10))

imgfile <- tempfile(, fileext=".png")
download.file("https://avatars1.githubusercontent.com/u/626539?v=3&u=e731426406dd3f45a73d96dd604bc45ae2e7c36f&s=140",
              destfile=imgfile, mode='wb')

p = ggplot(d, aes(x, y))
subview(p, imgfile, x=d$x[1], y=d$y[1]) + geom_point(size=5)

Read more

Teaching

I am a teaching instructor for the following courses at University X:

Contact