Root finding
Numerical root finding methods use iteration, producing a sequence of numbers that hopefully converge towards a limits which is a root. This post only focuses four basic algorithms on root finding, and covers bisection method, fixed point method, Newton-Raphson method, and secant method.
The simplest root finding algorithms is the bisection method. It works when f
is a continuous function and it requires previous knowledge of two initial gueeses, u
and v
, such that f(u)
and f(v)
have opposite signs. This method is reliable, but converges slowly. For detail, see https://guangchuangyu.github.io/cn/2008/11/bisect-to-solve-equation/ .
Root finding can be reduced to the problem of finding fixed points of the function g(x) = c*f(x) +x
, where c
is a non-zero constant. It is clearly that f(a) = 0
if and only if g(a) = a
. This is the so called fixed point algorithm.
fixedpoint <- function(fun, x0, tol=1e-07, niter=500){
## fixed-point algorithm to find x such that fun(x) == x
## assume that fun is a function of a single variable
## x0 is the initial guess at the fixed point
xold <- x0
xnew <- fun(xold)
for (i in 1:niter) {
xold <- xnew
xnew <- fun(xold)
if ( abs((xnew-xold)) < tol )
return(xnew)
}
stop("exceeded allowed number of iterations")
}
> f <- function(x) log(x) - exp(-x)
> gfun <- function(x) x - log(x) + exp(-x)
> fixedpoint(gfun, 2)
[1] 1.309800
> x=fixedpoint(gfun, 2)
> f(x)
[1] 3.260597e-09
The fixed point algorithm is not reliable, since it cannot guaranteed to converge. Another disavantage of this method is that the speed is relatively slow.
Newtom-Raphson method converge more quickly than bisection method and fixed point method. It assumes the function f
to have a continuous derivative. For detail, see http://guangchuangyu.github.io/cn/2007/06/newton-raphson-method/ .
The secant method does not require the computation of a derivative, it only requires that the function f
is continuous. The secant method is based on a linear approximation to the function f
. The convergence properties of the secant method are similar to those of the Newton-Raphson method.
secant <- function(fun, x0, x1, tol=1e-07, niter=500){
for ( i in 1:niter ) {
x2 <- x1-fun(x1)*(x1-x0)/(fun(x1)-fun(x0))
if (abs(fun(x2)) < tol)
return(x2)
x0 <- x1
x1 <- x2
}
stop("exceeded allowed number of iteractions")
}
> f <- function(x) log(x) - exp(-x)
> secant(f, x0=1, x1=2)
[1] 1.309800